Innovative solutions for industrial gas filtration
Applications – complex requirements

Gas filters are used in a variety of industrial processes such as:
- Exploration, transportation, storage and processing of oil and gas,
- Production of chemical and petrochemical products,
- Preparation of industrial raw materials,
- Operation of fixed and mobile installations for power generation.

Gas filters are often combined with compressors or turbines, but also with reactors and fixed or mobile large engines. The mediums to be filtered are normally seal gas, fuel gas, heating and cooling gas, injection gas as well as a number of technical gases. The filtration process can include the removal of particle contamination, the separation of moisture from gas or a combination of both.
There are high technical and safety requirements for gas filtration:
• Required degree of purity for the filtered gas,
• Specific properties of gases, which are explosive, aggressive, toxic, polluting,
• Special conditions of processes, such as extreme temperatures and pressures,
• Extreme environmental and climatic conditions,
• Exotic material specifications.

All listed aspects require the highest precision and maximum safety, which can be identified as a common denominator in the gas filtration industry. BOLLFILTER for oil and gas fulfil these comprehensively.
The perfect product for every requirement

All BOLL gas filters are characterised by the highest precision, reliability and safety. The special feature of the BOLLFILTER product program for gas filtration is that it covers all applications.

In addition to standard filters, the product range also includes filters that are manufactured according to customers’ specifications. The unique system flexibility and wide range of variants allow a precise customisation of the filter solution to the individual application requirements.

Simplex filters

<table>
<thead>
<tr>
<th>Nominal diameters</th>
<th>Connections inline</th>
<th>Switch-over</th>
<th>Material variations</th>
<th>Filter housing</th>
<th>Pressure stage</th>
<th>Temperature range</th>
<th>Grade of filtration</th>
</tr>
</thead>
<tbody>
<tr>
<td>DN 25 – DN 200</td>
<td>no</td>
<td>–</td>
<td>carbon steel, stainless steel, Duplex, Super Duplex, Inconel, non-welded</td>
<td>max. PN 550</td>
<td>from -196°C to 250°C</td>
<td>0.1 µm - 250 µm **</td>
<td></td>
</tr>
<tr>
<td>DN 25 – DN 80</td>
<td>yes</td>
<td>–</td>
<td>nodular cast iron, cast stainless steel (DN 25 und DN 50)</td>
<td>PN 32 / PN 40*</td>
<td>from -10°C to 160°C</td>
<td>10 µm – 5000 µm *</td>
<td></td>
</tr>
<tr>
<td>DN 25 - DN 300</td>
<td>no</td>
<td>–</td>
<td>carbon steel, stainless steel, Duplex, Super Duplex, Inconel, welded</td>
<td>max. PN 250</td>
<td>from -196°C to 250°C</td>
<td>0.1 µm - 250 µm</td>
<td></td>
</tr>
</tbody>
</table>

* Dependent on the filter size
** With coalescer – optionally with demister and cyclone
For each type of gas, volume of gas, required degree of purity, type of plant and all operating conditions, the BOLLFILTER portfolio offers a perfect gas filter. Available options include:
- Simplex or Duplex filter
- Forged, welded or cast construction
- Different housing sizes and connection nominal diameters
- Particle or coalescer elements
- Cyclone pre-separation/knock-out
- Demister pre-separation
- Additional reservoir sizes according to the application
- Liquid level indicator
- Differential pressure indicator/transmitter

Duplex filters

<table>
<thead>
<tr>
<th>BOLLFILTER Duplex Type BFD-C</th>
<th>BOLLFILTER Duplex Type 2.58.2/2.78.2</th>
<th>BOLLFILTER Duplex Type BFD-P DBB/BFD-C DBB</th>
</tr>
</thead>
<tbody>
<tr>
<td>DN 20 – DN 200</td>
<td>DN 25 - DN 200</td>
<td>DN 20 – DN 200</td>
</tr>
<tr>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>ball valve</td>
<td>ball valve</td>
<td>ball valve</td>
</tr>
<tr>
<td>carbon steel, stainless steel, Duplex, Super Duplex, Inconel, non-welded</td>
<td>carbon steel, stainless steel, Duplex, Super Duplex, Inconel, welded</td>
<td>carbon steel, stainless steel, Duplex, Super Duplex, Inconel, non-welded</td>
</tr>
<tr>
<td>max. PN 100 / PN 550</td>
<td>max. PN 250</td>
<td>max. PN 550</td>
</tr>
<tr>
<td>from -196°C to 250°C</td>
<td>from -196°C to 250°C</td>
<td>from -196°C to 250°C</td>
</tr>
<tr>
<td>0.1 µm - 250 µm **</td>
<td>0.1 µm - 250 µm</td>
<td>0.1 µm - 250 µm</td>
</tr>
</tbody>
</table>
Gas filtration: An overview

Gas filtration is a very complex task. Depending on the contamination of the untreated gas and the nature of the entrained particles, different methods are applied. This can involve filtration of solid particles, liquids and a combination of both. The quality of the filtration result is dependent on the filter medium used, type of filter element and the pre-treatment if applicable.

During inertia separation, the particle cannot follow the flow, due to its own mass. As a consequence, it collides with the fibre and sticks to the filter element before getting separated. Consequently, this mechanism is important for larger particles. The interception occurs, when the particle is able to follow the flow, but then when expanding it comes into contact with the filter fleece. The Brownian molecular forces cause a constant movement of the particle and therefore raises the chance for the particle to strike a fibre and get separated. This effect causes the separation by diffusion and occurs with very small particles.

All of the above-mentioned mechanisms apply for both solid and liquid particles. Due to the different influences on the particle size, the typical degree of separation curve arises, showing the “MPPS” (Most penetrating particle size), which is the point of the lowest (finest) degree of separation.

Gas filtration

During the filtration of gases, there are three separation mechanisms: surface area filtration, depth filtration and diffusional filtration. In depth filtration, three types of physical mechanisms have an effect on the particle: inertia, interception and diffusion. The particle can consist of solids as well as liquids.

- **Depth Filtration**

During inertia separation, the particle cannot follow the flow, due to its own mass. As a consequence, it collides with the fibre and sticks to the filter element before getting separated. This mechanism is important for larger particles. The interception occurs, when the particle is able to follow the flow, but then when expanding it comes into contact with the filter fleece. The Brownian molecular forces cause a constant movement of the particle and therefore raises the chance for the particle to strike a fibre and get separated. This effect causes the separation by diffusion and occurs with very small particles.

All of the above-mentioned mechanisms apply for both solid and liquid particles. Due to the different influences on the particle size, the typical degree of separation curve arises, showing the “MPPS” (Most penetrating particle size), which is the point of the lowest (finest) degree of separation.
During inertia separation, the particle cannot follow the flow, due to its own mass. As a consequence, it collides with the fibre and sticks to the filter element before getting separated. Consequently, this mechanism is important for larger particles. The interception occurs, when the particle is able to follow the flow, but then, when expanding it comes into contact with the filter fleece. The Brownian molecular forces cause a constant movement of the particle and therefore raises the chance for the particle to strike a fibre and get separated. This effect causes the separation by diffusion and occurs with very small particles.

All of the above-mentioned mechanisms apply for both solid and liquid particles. Due to the different influences on the particle size, the typical degree of separation curve arises, showing the “MPPS” (Most penetrating particle size), which is the point of the lowest (finest) degree of separation.

During the filtration of gases, there are basically two different types of separation mechanisms: surface area filtration and depth filtration. In the field of gas filtration, depth filtration is almost exclusively used. In depth filtration, three types of physical mechanisms have an effect on the particle: inertia, interception and diffusion. The particle can consist of solids as well as liquids.

During the filtration of solid particles from gas, the particles flow into the filter fabric. Due to the separation mechanism, the particles get stuck as soon as they touch the fibres of the filter element fabric. Depending on the consistency of the filter fabric and the size of the particles, they penetrate into the depth of the fabric. The result is that the pores become blocked and as a consequence, the differential pressure increases.

As the particle separation occurs deep in the fibers, a cleaning of the particles from the fabric is not possible. Consequently, all filter elements have to be replaced at a certain differential pressure. Design criteria include not only the gas components, but the operational parameters such as volume flow, pressure, temperature, separation efficiency, differential pressure and expected amount of particles.
The coalescer element

The coalescer element manufactured by BOLL & KIRCH contains two stages. The first stage filters the solid particles out of the gas flow and the second stage separates the liquid particles. Normally, the liquid particles penetrate deeper into the fabric. When the liquid particles are deposited, they amalgamate and form larger drops that are separated by gravity.

At a certain size, the drops will run down on the fibres in compliance with the law of gravity. When the drops reach the bottom of the filter element, they fall out and are retained in the drain reservoir. The differential pressure also rises with the increasing soiling of the filter element, however, in a coalescer element, this may also occur, when the succeeding fluid stream does not exceed the amount of liquid being able to be drained and solid particles cannot be found in the gas flow.

The demister as a pre-separator

The demister is used as a pre-separator when the gas in liquid form is expected to be highly contaminated. Solid particles can only be separated from a fluid up to a certain amount. Therefore, an interlock of the canals is possible and a demister should only be used in a duplex filter. In opposite to the cyclone, the demister is less vulnerable to changes by operation conditions like pressure or volume flow.

In a demister, the inertia effect is the main separation mechanism. Good separation efficiency is achieved by a repeated deflection of the gas flow in the demister. The particles are deposited on the wire via gravity. The design of the demister depends not only on the operating conditions like volume flow, but also on the type of particle, the filtered medium and the required separation efficiency.
The cyclone as a pre-separator

The cyclone, like the demister, is used as a pre-separator when the gas is expected to be highly contaminated by liquid and solid particles. The cyclone separates high solids content as well as high moisture content. The separation efficiency is based on centrifugal force, which carries the particles to the outer wall of the cyclone.

To separate even the smallest and lightest particles, a fast rotating gas flow is necessary. This is supplied by the special introduction of the gas into the cyclone. Once separated by centrifugal force, the particles run down the inner wall of the cyclone into a collection zone. Because of the separation principle, the separation efficiency of the cyclone depends on the operating conditions. Widely varying operating conditions lead to varying separation efficiencies. Due to the required high gas velocity, a relatively high pressure loss has to be accepted.
BOLL & KIRCH: The expert for gas filtration

For more than 60 years, we are focusing on the filtration of liquids and gases. Today, the brand BOLLFILTER is a guarantee for high performance, precise function, best material, best processing, reliability and freedom from maintenance. This is based on a quality management system, which is designed according to international standards and certified according to ISO 9001 and ISO 14001.

As part of Research and Development as well as in the course of regular production control, product tests and quality tests play an equally important role at BOLL & KIRCH. This ensures that all manufactured products fulfil the legal and customer-specific requirements and that only qualitatively flawless products leave the production. Gas filter elements for example, go through a rigorous test of efficiency, capacity and safety, facilitated by the following measures:

- Fractional separation efficiency measurements according to ISO 12500-3
- Differential pressure measurements
- Loading measurements
- Bubble Point Test according to ISO 2942

All test installations are in-house and therefore always available. A highly sophisticated, special software is used for the automatic control of the test runs and to document the results.
Individual filtration systems for special requirements

Gas filtration on an industrial scale demands highly sophisticated filter systems for most different tasks, plant and operating conditions. In addition to adapting our core group of standard products, BOLL also strategises with our customers to develop specialised technically optimal solutions for individual applications. Within Customised Engineering, we accompany our customers through all project sub-processes from the definition of the requirements to the realisation and the commissioning of the systems.

All BOLLFILTER models, whether standard or special executions, are top-quality products. In their competitive environment, they set quality standards for gas and liquid filter systems. This is confirmed by 80 national and international authorisations and certificates.

<table>
<thead>
<tr>
<th>Authorisation/ regulations/ set of rules</th>
<th>Construction design</th>
<th>Inspections & tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>API 610 / 614 / 61B / 692 (international)</td>
<td>ASME Section VIII, Division 1 (USA/international)</td>
<td>PMI (Positive Material Identification)</td>
</tr>
<tr>
<td>DIN ISO 10438-1 (international)</td>
<td>AD-2000 (Germany/Europe)</td>
<td>X-ray inspection</td>
</tr>
<tr>
<td>U-Stamp (international)</td>
<td>DIN EN 13445 (Europe)</td>
<td>Ultrasonic inspection</td>
</tr>
<tr>
<td>NACE MR 0175/ISO 15156-3/ NACE MR 0103</td>
<td>Codap (France)</td>
<td>Dye penetrant testing</td>
</tr>
<tr>
<td>2014 / 68 / EU Innovative solutions for industrial gas filtration</td>
<td>PD 5500 (UK/Europe)</td>
<td></td>
</tr>
<tr>
<td>Manufacturing License Republic of China (China)</td>
<td>AS 1210 (Australia)</td>
<td></td>
</tr>
<tr>
<td>Dosh (Malaysia)</td>
<td>NZ 1210 (New Zealand)</td>
<td></td>
</tr>
<tr>
<td>ARH/DPP (Algeria)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRN (Canada)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NR-13 (Brazil)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EAC (TR CU)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOM (Singapore)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UDIT (Poland)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NORSOK (Norway)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
For vessels with BOLLFILTERs on board, there are service centers and original spare parts in stock in the main ports all over the world. This extensive network of branches and subsidiaries ensures that there are no gaps in the operational capability of the installed BOLLFILTERs.

In addition, BOLLFILTER users have the option to sign a “Global Agreement”. Then they have access to a service hotline 24 hours a day, seven days a week. If required, a service technician can be mobilised immediately and set out en route with the required spare parts to ensure optimum operation of the BOLLFILTER at all times.

Contact:
Boll & Kirch Filterbau GmbH
Siemensstraße 10-14
50170 Kerpen
Telephone: +49 2273 562 0
Fax: +49 2273 562 223
Email: info@bollfilter.de
www.bollfilter.com